Qt Tips & Tricks

Presented by:
Integrated Computer Solutions Inc.

Agenda

e Qt Tips and Tricks
o Effective QML

Qt Tips and Tricks

Agenda

e MetaObject Tips
e Qt Properties, Dynamic Function Calling

o Implicit Sharing Tips
e Using Your Data Types
e Model - View Tips
e QAbstractitemModel As Interface To Data

e Performance Tips
e Looping, QPixmap/QImage, QNetworkAccessManager

e Threading Tips

e Cross Thread Signals/Slots, Event Loops
e Miscellaneous Tips

e ComboBox itemData(), i18n, casts

Meta Object Tips

QODbject

e Heart and Soul of Qt Object
e Signals and Slots are implemented here
e QObjects can have “child objects”
e Parents have some control over children
e Deleting them, laying them out, etc

e Also Qt Properties!

Introspection

e QObjects can report at runtime

e Class name, Super class

e Lists of signals and list their arguments
e Lists of functions and list their arguments
o

Invoke methods by name
¢ (OMetaObject: :invokeMethod (objPtr, "function");

Meta Object Compiler

e Introspection info is generated by moc
e Reads header files. Writes source code

* moc -0 moc class.cpp class.h
e MetaObject is static

e One instance per QObject subclass

Print Enum and Flag Values

e Qt's meta object system records enum names
e Information usually thrown out by the compiler

e Makes it trivial to save/print string values for enums

Integrated
I s Computer
Solutions

Q_ENUM Example

class MyClass : public ... {
Q OBJECT

public:
enum Priority {
HIGH = O,
MED,
LOW
}; Q ENUM(Priority)

Integrated
I s Computer
Solutions

Q_FLAG Example

class MyClass : public ... {
Q OBJECT

public:

enum StatusField {
HeaterOn =1,

PumpOn = 2

14
AcPower 4

};
Q DECLARE FLAGS (StatusFlags, StatusField)
Q FLAG(StatusFlags)
};
Q DECLARE OPERATORS FOR FLAGS (MyClass::StatusFlags)

Accessing Enum Strings

e Via QtMeta Object

® obj->metaObject()->metaEnumAt (index)

e Via gqDebug()

® gDebug() << (HeaterOn | AcPower)
e (HeaterOn, AcPower) appears on stdout

Dynamic Function Calling

® QOMetaObject: :invokeMethod(...)
e Can invoke any slot
e Sync or Async
e With parameters and return type
e No access to return type for async invocations
o Useful for delayed initialization
e Like QTimer: :singleShot (), but with arguments!

e Useful for IPC mechanisms

Integrated
I s Computer
Solutions

QMetaObject::invokeMethod()

bool QMetaObject: :invokeMethod (
QObject* obj,
const char* member,
Qt: :ConnectionType type,
QGenericReturnArgument ret,
QGenericArgument valo,

QGenericArgument val9);

invokeMethod Helper Macros

® QGenericReturnArgument and QGenericArgument are internal helper
classes for argument marshalling
e Do not use these classes directly, use the convenience macros
instead
o Create a QGenericArgument
Q ARG(Type, const Type & value)
o Create a QGenericReturnArgument
Q RETURN ARG(Type, Type& value)

invokeMethod Connection Type

e Invoke method immediately e Place in event queue and invoke
(synchronous) method when event is processed
OQMetaObject: : invokeMethod ((asynCh ronOUS)

obj, "doStuff", OMetaObject: : invokeMethod (
Qt: :DirectConnection); obj, "doStuff",

Qt: :QueuedConnection) ;

When to use invokeMethod

e Use when calling methods “"by name”

e Method name does not have to be known at compile time
e Think IPC

e Use for delayed invocation
e Method calls will be posted to the event loop

e ...potentially the event loop of other threads
This is how cross-thread signals/slots work

Implicit Sharing Tips

Implicitly Shared Classes

e Most of Qt's Data Classes are implicitly shared
e Copies of classes point to the same internal data
e Very fast copies. Saves memory
e Reference counted
e Data is actually copied on modification
e Copy-On-Write semantics
e QString, QPixmap, QImage, QByteArray, etC

e You can roll your own implicitly shared classes
e Using the same classes Qt Engineers use!

[ContainerClass]::detach()

e Copy of data is performed in the detach() function
e If this appears in profiling data you may be accidentally copying data

Custom Implicitly Shared Data

e Inherit from QSharedbData
e Provides required ref () and deref () impls
e These are atomic thread-safe impls

e Create a flyweight object with gsharedpataPointer<>as a private
member

e Hides sharing implementation from client code

Custom Implicitly Shared Data

class EmployeeData : public QSharedData
{
public:
EmployeeData() : id(-1) { name.clear(); }
EmployeeData (const EmployeeData &other)
: OSharedData (other), id(other.id) ,name (other.name) {}
~EmployeeData () { }

int 1id;
QString name;

Custom Implicitly Shared Data

class Employee
{
public:
Employee() { d = new EmployeeData; }
Employee (int id, QString name) {
d = new EmployeeData;
setId(id) ;
setName (name) ;
}
Employee (const Employee &other)
: d (other.d) {}
private:
QSharedDataPointer<EmployeeData> d;

};

Model - View Tips

Model - View Tips

e Avoid using all-in-one Model/View widgets
e QListWidget, QTableWidget, QTreeWidget
e Needs to copy data!
e Syncing issues WILL arise
e Only really useful for simple lists, small amount of data, that does not
change.

e Avoid using @StandardItem Models
e Same reasons as above.

Model - View Tips

e Use QAbstractItemModel (QAIM) as an Interface
e Wrap your data with QAIM for use with Qt's Model-View Classes

Actual Data | QAIM | -
. t View
Storage Class Impl R

QModelIndex

e Representation of a cell
e Row, Column, Parent

¢ QAIM: :index(int row, int col, QModelIndex parent)
e Used through the QAIM API

e Internal implementation is
e Row, Column, QAIM*, Identifier (void* or int)
e QAIM::createIndex(int row, int col, void* ptr)

e Very Small. Very Fast.
e Transient objects DO NOT STORE!
e Could be instantly invalidated by inserts/removes

QPersistentModellndex

e Storable QModellndex
e Implicit conversion to/from QModellndex

e Model Index that is maintained by the Model
e Row incremented on another row inserted
e Row decremented on another row removed
e Index set to QModellndex() when row is removed

e Watch out for performance issues
e Updating these indexes does take time

QAIM API

e Read Only Tables (Use QAbstractTableModel)

e int rowCount(const QModelIndex &parent = QModelIndex()) const
¢ int columnCount(const QModelIndex &parent = QModelIndex()) const
®@ QVariant data(const QModelIndex &index, int role) const

e Different roles for display, editing, pixmap, etc.

e It's like a 3™ Dimension. Cells have role depth.
e Editable Tables (Use QabstractTableModel)

® bool setData(const QModelIndex &index, const QVariant &value, int role)
@ void insertRows(int row, int count, QModelIndex parent)
® void removeRows(int row, int count, QModelIndex parent)

QAIM API

e Trees (Use QAbstractItemModel)

® OModelIndex index(int row, int column, const QModelIndex &parent) const
® QOModelIndex parent(const QModelIndex &child) const

e Implementations of the above can be a little mind bending
e But well worth the effort

Integrated

Computer
Solutions

Model - View Example

e Example of QAIM as a wrapper.
e To Qt Application Widget Hierarchy!
e It's a doubly linked tree! parent() and children()
e Extremely short code wrapper code.

e Check out the ObjectBrowser Example!

Class Name Object Name Address £

: : w]| [0 ~ [ooo o
- Qbhialog Test Ox8425350 : =
DSlider horizontalslider 0O0x841db0o0 i = 4.9
- QDoubleSpinBox doubleSpinBox 0x8420d00 LS. E
+- QLineEdit gt spinbox_lin... 0x8420e48 : T~ - ~ . . AT ~
: L s 12:00 AM 1/12/00 171700 12:00 M
~ QWalidator gt spinboxvali... 0x84b7700 bt 1/ >4 iy 4
- QLineEdit lineEdit Ox8420d60
-+ Oxygen::TransitionWidget Ox849b2d0 -
QLCDMumber lcdMumber Dx28420dd0 RadicHutEan cHiackEax
- QHBoxLayout hboxLayout 0x8428710 = —Bushihattan. __
+- OWEBoxlLayout vboxlLayout Ox8430450
- QComboBox comboBox OxB8428728
QstandarditemModel Ox8426e248 ~ i
+ - Ciwwrman - - TransibhonWicrnet MNvRAIASIR ' B A
< <> S— =

Performance Tips

Looping Performance Tips

e Use Iterators!
e Maps, Hashes, Linked List Iterators are much faster than [i] index lookups.
e Code is more complex, but worth it.
e Most data classes in Qt are implicitly shared
e Don't be afraid to copy dereferenced iterator values

e Const reference is still better.

STL Iterators

e Compatible with STL Algorithms e Reverse

e Const and non-const versions QList<QString>::iterator i = list.
e Always use const version when end() ;
e Forwards .
*1 += w; }
QList<int>::iterator 1i;
for (1 = list.begin(); i '= list.

end (), ++1i)
*1 += 2;

Java-like Iterators

e IJterators with a Java Style API e Reverse (and Mutable)
e Roughly symmetrical forward and QMutableListIterator<int> i(list);
reverse APIs i.toBack() ;
e Mutable iterator classes allow list while (i.hasPrevious()) {
modification if (i.previous() % 2 !'= 0)
e Forwards i.remove(); }

QListIterator<QString> i (list);
while (i.hasNext())
gDebug () << i.next();

Looping Performance Tips

e Use const references for foreach()
e Yes, Qt has it’'s own foreach macro. Use it!
e Avoids typos/fence posting when iterating a whole container
e Using a const ref variable avoids a copy

foreach (const BigData& data, bigList)

{
doSomething (data) ;

}

QImage vs. QPixmap

e QImage

Platform independent array bitmap
Lives in application memory space

Easy to manipulate pixels
(Query/set colors)

Needs to be copied to graphics
memory to draw

e QPixmap

Native representation of a bitmap
(YUV, etc)
Lives in System (X Server) or even

GPU Memory
No ability to set individual pixels

Very fast to draw. Bitmap is closer

to hardware.

QNetworkAccessManager

e ONetworkAccessManager (QNAM) is awesome
e Multiple protocols (HTTP/FTP/HTTPS)
e SSL integrated
e Provides caching of data
e Can be persistent across runtimes

e LightMaps from Qt Labs is a perfect example

QNetworkAccessManager Cache

e LightMaps example Uses OpenStreetMap tiles
¢ QNAM automatically caches tiles as they are loaded

e Makes panning much faster
e And code is very clean

" s\Mordbahnhof

r -".:‘\: = = 5 o F % 3 " .u-a%g . ’
N - =z B A \ Tars
T - i %‘(-KDCTC. %a -]

) l:-l:::.l.l'-c!l':-l.':-:"'.:l anienburger Tor - 4
Map deta CCB.‘*ESH-‘?DG% -Gpeﬁ%trees’fﬁgﬁ?ﬁerg contributors o™ %m oate

QNetworkAccessManager Cache

e In constructor
m manager = new QNetworkAccessManager (this);

ONetworkDiskCache *cache = new QNetworkDiskCache;
cache->setCacheDirectory (cachePath) ;
m manager->setCache (cache) ;

connect (m manager, SIGNAL(finished (QNetworkReply¥*)),
this, SLOT (handleNetworkData (ONetworkReply*)));

QNetworkAccessManager Cache

e In download() (simplified to fit)
QString path = "http://domain.orqg/%1/%2/%3.png";
m url = QUrl (path.arg(zoom) .arg(x) .arg(y)):

ONetworkRequest request;

request.setUrl (m url);

request.setAttribute (QNetworkRequest: :User, grab) ;
m pendingReplies << m manager->get (request);

Miscellaneous Tips

Safer Casts with qobject_cast

e gobject cast<>() is a library safe dynamic cast
e Behaves much like dynamic_cast
e Returns NULL pointer on error

e Uses Qt Meta-Object System (Introspection)
e Mmoc records all signals, slots, properties
e Also inheritance hierarchy and string class names

e Actual impl compares static QMetaObject*s
e Fast! Faster than gcc’s dynamic cast<>

Finding Children

e T findChildren<T> (QString name=QString())
e Returns descendants from any level of parenting tree
e Built-in gobject cast<>()

QList<MyWidget*> children = findChildren<MyWidget*> () ;
//Children has all instance of MyWidget in dialog.

QList<MyWidget*> children = findChildren<MyWidget*>(“Hi”) ;
//Children has one instance of MyWidget with
//objectName () == Hi

Use QComboBox itemData()

e Use user data when inserting items

® addItem(const QString & text, const QVariant userData)
e QVariant is a wrapper class for many Qt data classes
e Can be extended to support custom classes

e Easy way to store mappings
e User selectable string/Icon to Enum/Color/Font

Use QComboBox itemData()

e Font Combo Box Example:

[Dejavu Sans| w |

MyDialog: :MyDialog () {
QStringList fonts = QFontDatabase::families();
foreach (QString family, fontList)
m combo->addItem(family, QFont(family));

}

MyDialog: :indexChanged (int index) {
setFont (m_combo->itemData (i) .toFont())
}

118n Tips

e Wrap all user visible strings in tr()
e |update, Irelease and linguist take care of the rest

e Use static QObject::translate() outside of QObject scope

e Be careful when combining strings
e "File " 4+ fileName + " saved."
e Can’t easily be translated
¢ OString("File %1 saved.") .arg(fileName) ;
e % identifiers can be moved by the translation

e %1 - %99 can be used in any string

Threading Tips

Threading Tips

e Use classes that use background processing

e ONetworkAccessManager, QHostInfo
e Sockets, etc

e Use Qt event loops for producer/consumer
e You don't have to write synchronization code

Event Loop Work Queues

e Use per-thread Qt event loops as work queues
e Use cross thread signals and slots to assign work
e Use cross thread signals and slots to return results
e Avoids locking the work queue

e QEventLoop has built-in locks

Threading Tips

e Create a worker thread with run() {exec() ;}
e This is the default impl of run()

e Connect signals to thread slots to dispatch work
e Connect to thread signals to get results

o Watch out for QThread’s Thread Affinity
e It belongs to the thread that CREATED it

e Not a big deal, just use a helper class created in the spawned thread.

Event Loop Work Queues

connect (this, SIGNAL (workAvailable (WorkType)),
thread->worker (), SLOT (doWork (WorkType))) ;

connect (thread->worker () , SIGNAL (workComplete (WorkType)),
this, SLOT (processWorkDone (WorkType))

//Auto Connection will cause events to be dispatched to the other thread
emit workAvailable (work) ;

void processWorkDone (WorkType) { //Work is received

};

Event Loop Work Queues

class MyThread : public QThread
{
public:

void run() {exec() ;}

Worker* worker() ;
};
class Worker : public QObject
{
signals:

workComplete (WorkType work) ;
public slots:

doWork (WorkType work) ;

};

General Threading Tips

e Use QMutex with QMutexLocker
e Constructor Locks; Destructor Unlocks

void exclusiveFunction () {

OMutexLocker mutexLocker (m mutex); //Constructor locks

} //Destructor unlocks

e Be careful not to hold the lock too long with a scoped lock!

Effective QML

Agenda

Building Blocks of QML
Declarative Code
Creating New Item Types
Dynamic Item Creation
States

Using C++ and QML

Building Blocks of QML

QQuickItem

e Most Qt Objects inherit QObject
e QQuickItem IS NO exception
e Gets many of it's features directly from QObject

e We will be leveraging these capabilities throughout class

Qt Properties

e Combination of Get/Set/Notify
e Allows introspection system to use these functions as one concept
e Properties have been in Qt for a very long time
e Qt Designer is based on properties

e QML is also based on properties

Declaration of a Qt Property

#include <QObject>

class Car : public QObject

{
Q OBJECT

Q PROPERTY (int value READ value WRITE setValue NOTIFY valueChanged)

public:
int getValue() const;
void setValue (int newValue) ;

signals:
void wvalueChanged(int wvalue) ;

};

Declarative Code

Basic QML Syntax

e QML is declarative language
e With hooks for procedural JavaScript
e Use as little JavaScript as possible

e QML files a read at runtime
e The declarative parts create C++ instances

e JavaScript is JIT interpreted

QtQuick Hello World

import QtQuick 2.2

Rectangle({
id: toplevel
color: "blue"
Text {
text: "Hello World"

}

MouseArea {
anchors.fill: parent
onClicked: Qt.quit()

}

Qt Quick Items

e Rectangle, Text and MouseArea
e Are implemented in C++
e Instances of QQuickRectangle, QQuickText, Etc
e Loading QML is slower than compiled code

e At runtime performance is great

QML Bindings

\ U/

e ":" s the binding operator

e Right of the binding operator is JavaScript
e Text {

text: "Hello World " + Math.rand()

}

Bindings are Declarative

e When any property used in a binding changes the expression is
recalculated

® Gauge ({
value: Math.min (gaugeMax, Math.max (gaugeMin, oilPressure.value))

}

e Value is updated whenever properties change
e gaugeMax, gaugeMin or oilPressure.value

e Inline binding are anonymous functions. Auto-recalculation rules also apply
when assigning a named function to a binding
® value: calculateValue()

JavaScript is Procedural

e Avoid this!
Gauge {

Component.onCompleted: ({
setGaugeValue (oilPressure.value)
oilPressure.valueChanged. connect (setGaugeValue)

}

onGaugeMinChanged: setGaugeValue (value)
onGaugeMaxChanged: setGaugeValue (value)

function setGaugeValue(oilValue) {

value = Math.min (gaugeMax, Math.max (gaugeMin, oilValue))

}

Broken Bindings

e Assignment operator breaks bindings
e Binding works for awhile. Then doesn't.

Gauge {
id: gauge
visible: Dashboard.isOilPressureVisible

}

Button {
onClicked: { // Tries to temporarily hide gauge
if (gauge.visible)
gauge.visible = false
else
gauge.visible

Dashboard.isOilPressureVisible

}
}

Creating New Items

Dividing Code Into Components

e Often a desire to put too much code in one QML file
e¢ Common issue for all programming languages
e QML makes it easy to componentize your code

e Component refers to an item that can be instanced multiple times

Creating New Items

e Simply create a new .gml file
e Type is named after the filename
e Must begin with a capital letter
e Implement
e Properties
e Signals
e Functions

Using Custom Component

Rectangle{ // Main.gml

id: toplevel
color: "black"

Button {
text: "Click Me"
onClicked: toplevel.color = "white"

Integrated
I s Computer
Solutions

Custom Button Component

Rectangle{ // Button.gml
id: button
property alias text: label.text
signal clicked()

color: "blue"
width: 100; height: 50

Text {
id: label
anchors.centerIn: parent

MouseArea {

id: ma
anchors.fill: parent
onClicked: button.clicked()

}
}

Alias Properties

e Proxies properties to child items
e Allows hiding of implementation details

e Saves memory and binding recalculations

Property Scope

e Public Scope
e All public properties of the root item
e Custom properties defined on the root item

e Private Scope
e All child items and their properties

Public Members

Rectangle{ // Button.gml
id: button
property alias text: label.text
signal clicked()

color: "blue"

Integrated
I s Computer
Solutions

Private Members

Rectangle{ // Button.gml

Text {
id: label
anchors.centerIn: parent

MouseArea {
id: ma
anchors.fill: parent
onClicked: button.clicked()

Private Properties

Rectangle { // Button.qgml

QtObject {
id: internal
property int centerX: button.width() /2

Text {
X: internal.centerX

}

}

Dynamic Creation of Items

Creating Items Dynamically

e Procedural Way
e Component createObject(parent, bindings) function

e Declarative Way
e Loader Item

e Repeater Item
e ListView / GridView Items

Integrated
I s Computer
Solutions

Procedural Creation

Item {
id: screen
property SettingDialog dialog: undefined

Button {
text: "Settings..."
onClicked: {
var component = Qt.createComponent ("SettingsDialog.gqml")
screen.dialog = component.createObject (screen, { "anchors.centerIn": screen })
screen.dialog.close.connect (screen.destroySettingsDialog)

}
function destroySettingsDialog()

{

screen.dialog.destroy ()
screen.dialog = undefined

Integrated
I s Computer
Solutions

Declarative Creation

Item {
Button {
text: "Settings..."
onClicked: loader.sourceComponent = dialogComponent
Loader {

id: loader
anchors.fill: parent

Component ({
id: dialogComponent
SettingsDialog {
anchors.centerIn: parent
onClose: loader.sourceComponent = undefined

Creating Multiple Items

Rectangle {

Repeater {
model: 24
Rectangle ({
width: 70; height: 70
color: "lightgreen"
Text {
anchors.centerIn: parent
text: index

Repeater

e Repeaters can use all types of data models
e JavaScript Array

ListModel

JSON

QList<QObject*>
QOmlListProperty
e QOAbstractItemModel

e Model data is accessed via attached properties

States and Transitions

States

e State Machines can make your code "more declarative”
e A basic state machine is built into every Item

e No sub states or state history

States

e Every Item has a states property
e States contain
e Name
¢ \When Clause

o List of PropertyChanges{} objects

Setting States

e Jtem can be set to a give state two ways
e 1) “state” property is set to the name of the State
e jtem.state = “Pressed”
e 2) The when clause of the State is true
e \When clauses must be mutually exclusive

e They are evaluated in creation order

Integrated
I s Computer
Solutions

Button States

Item {
Rectangle { id: bkg; color: "blue" }

MouseArea { id: ma }

states: [
State {
name: "Pressed"
when: ma.pressed
PropertyChanges { target: bkg; color: "red" }
}y
State {
name: "Disabled"
when: ! (ma.enabled)
PropertyChanges { target: bkg; color: "grey" }

Default State

e The initial bindings are the “"Default State”

\\ 77

e The name of the default state is
e Default state is in effect when
e No when clauses are satisfied

\\ 77

e "state” property is set to

Properties When in a State

e The bindings of a QML document are defined as
e The default state bindings
e Overlaid with PropertyChanges from the current state
e This will save you a ton of typing
e States do not need to be unwound
e Set common properties in the default state

e Avoids writing duplicate PropertyChanges

Transitions

e Run animations on a state change
e Control how properties will change
e Qt will automatically interpolate values

e Control in which order properties change

Integrated
I s Computer
Solutions

Transitions

[... 1]

transitions: |
Transition {
from: ""; to: "Pressed"
PropertyAnimation { target: bkg
properties: '"color"
duration: 500

b

Transition {
from: "*"; to: "Disabled"
PropertyAnimation { target: bkg
properties: "color"
duration: 250

Transition Defaults

e Transition{} defaults to
e from: "*"; to: "*"

e That Transition will apply to all state changes

e PropertyAnimation
e When a target is not specified
e That animation will apply to all items

Integrated
I s Computer
Solutions

Button Transition

Item {
Rectangle { id: bkg; color: "blue" }
MouseArea { id: ma }

states: [
State { name: "Pressed"; when: ma.pressed
PropertyChanges { target: bkg; color: "red" }
},

State { name: "Disabled"; when: ! (ma.enabled)
PropertyChanges { target: bkg; color: "grey" }

]

transitions: |
Transition {
PropertyAnimation { properties: "color"; duration: 500 }

The Behavior type

e Behavior allows you to set up an animation whenever a property
changes.

Behavior on x { SpringAnimation {
spring: 1

damping: 0.2

Demo gml-animations/ex-animations/spring-animation.qmi

Animations

Using C++ and QML

Integrated
l s Computer
Solutions

Drive QML with C++

Model - View Pattern

e C++ code can know nothing about the UI
e Properties, Slots and Signals are the interface in QML
e QML Items connect or bind to C++ Objects

e Good design is enforced
e C++ cannot depend on UI
e Avoids “accidental” storage of data inside UI components

e C++ is more portable to other UI frameworks

C++ Integration Techniques

e Expose object instances from C++ to QML
e Objects appear as global variables to QML
o Effectively singletons

e Expose C++ types to QML
e New types are available for QML programmers to use

e Remember how Rectangle and Text are actually C++7?

Creating Properties in C++

e Properties are the combination of
e Read function
e Write function
e Notify signal
e Signals/slots is Qt's object communication system

Integrated
I s Computer
Solutions

C++ Property Header

class CoffeeMaker : public QObject

{
Q OBJECT
Q PROPERTY (int temp READ getTemp WRITE setTemp NOTIFY tempChanged)

public:
int getTemp () const;
void setTemp (int temp) ;

signals:
void tempChanged(); //Using a parameter is not required by QtQuick

private:
int m temp;

};

Source i1s as usual

int CoffeeMaker::getTemp () const
{

return m temp;

}
void CoffeeMaker: :setTemp (int temp)

{
if (m_temp != temp)
{

m temp = temp;

emit tempChanged() ;

Complex Proeprties

e QObject* can be used as a property
e Used for encapsulation and creating trees of properties

e Properties can have properties!

Invokable C++ Methods

e Methods can be called from QML
e Any slot can be called

e Any Q INVOKABLE can be called

Invokable C++ Return Types

e Any basic Qt or C++ type
e int, double, QString, etc

e Any returned QObject* belongs to QML
e Will be deleted by QML during GC

e NOTE: QObject* returned from a Q_PROPERTY
e Belongs to C++

Invokable C++ Functions

class CoffeeMaker : public QObject
{

Q INVOKABLE void startBrew() ;

Exposing Instances

int main(int argc, char** argv)

{

CoffeeMaker maker;

view.rootContext () ->setContextProperty ('"'maker", &maker)

Exposing Instances QML

text: "Coffee Temp" + maker. temp

onClicked: maker.startBrew() ;

Exposing C++ Types to QML

e Rather than making one CoffeeMaker in main
e Allow QML Programmer to create N CoffeeMaker items

e All of the above applies to exposed types
e Instead of using setContextProperty

e Use gmlRegisterType<> ()

Expose C++ Types

gnlRegisterType<CoffeeMaker>("MrCoffee", 1, 0,"CoffeeMaker")

Integrated
I s Computer
Solutions

Expose C++ Types QML

import MrCoffee 1.0
CoffeeMaker { id: maker }

text: "Coffee Temp" + maker.temp

onClicked: maker.startBrew() ;

Thank You!

Prepared by the Engineers of
Integrated Computer Solutions, Inc.

WWW.ICS.CcOmMm

